Identification of lactate dehydrogenase as a mammalian pyrroloquinoline quinone (PQQ)-binding protein

نویسندگان

  • Mitsugu Akagawa
  • Kenji Minematsu
  • Takahiro Shibata
  • Tatsuhiko Kondo
  • Takeshi Ishii
  • Koji Uchida
چکیده

Pyrroloquinoline quinone (PQQ), a redox-active o-quinone, is an important nutrient involved in numerous physiological and biochemical processes in mammals. Despite such beneficial functions, the underlying molecular mechanisms remain to be established. In the present study, using PQQ-immobilized Sepharose beads as a probe, we examined the presence of protein(s) that are capable of binding PQQ in mouse NIH/3T3 fibroblasts and identified five cellular proteins, including l-lactate dehydrogenase (LDH) A chain, as potential mammalian PQQ-binding proteins. In vitro studies using a purified rabbit muscle LDH show that PQQ inhibits the formation of lactate from pyruvate in the presence of NADH (forward reaction), whereas it enhances the conversion of lactate to pyruvate in the presence of NAD(+) (reverse reaction). The molecular mechanism underlying PQQ-mediated regulation of LDH activity is attributed to the oxidation of NADH to NAD(+) by PQQ. Indeed, the PQQ-bound LDH oxidizes NADH, generating NAD(+), and significantly catalyzes the conversion of lactate to pyruvate. Furthermore, PQQ attenuates cellular lactate release and increases intracellular ATP levels in the NIH/3T3 fibroblasts. Our results suggest that PQQ, modulating LDH activity to facilitate pyruvate formation through its redox-cycling activity, may be involved in the enhanced energy production via mitochondrial TCA cycle and oxidative phosphorylation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural requirements of pyrroloquinoline quinone dependent enzymatic reactions.

On the basis of crystal structures of the pyrroloquinoline quinone (PQQ) dependent enzymes methanol dehydrogenase (MDH) and soluble glucose dehydrogenase (s-GDH), different catalytic mechanisms have been proposed. However, several lines of biochemical and kinetic evidence are strikingly similar for both enzymes. To resolve this discrepancy, we have compared the structures of these enzymes in co...

متن کامل

Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway.

In Klebsiella pneumoniae, six genes, constituting the pqqABCDEF operon, which are required for the synthesis of the cofactor pyrroloquinoline quinone (PQQ) have been identified. The role of each of these K. pneumoniae Pqq proteins was examined by expression of the cloned pqq genes in Escherichia coli, which cannot synthesize PQQ. All six pqq genes were required for PQQ biosynthesis and excretio...

متن کامل

Pyrroloquinoline quinone modulates the kinetic parameters of the mammalian selenoprotein thioredoxin reductase 1 and is an inhibitor of glutathione reductase.

Pyrroloquinoline quinone (PQQ) is a redox active cofactor for bacterial quinoproteins. Dietary PQQ also has prominent physiological effects in mammals although no mammalian quinoprotein has yet been conclusively identified. Here we found that PQQ has substantial effects on the redox active mammalian selenoprotein thioredoxin reductase 1 (TrxR1). PQQ efficiently inhibited the activity of TrxR1 w...

متن کامل

Screening of Peptide Ligands for Pyrroloquinoline Quinone Glucose Dehydrogenase Using Antagonistic Template-Based Biopanning

We have developed a novel method, antagonistic template-based biopanning, for screening peptide ligands specifically recognizing local tertiary protein structures. We chose water-soluble pyrroloquinoline quinone (PQQ) glucose dehydrogenase (GDH-B) as a model enzyme for this screening. Two GDH-B mutants were constructed as antagonistic templates; these have some point mutations to induce disrupt...

متن کامل

Production of pyrroloquinoline quinone by using methanol-utilizing bacteria.

A large number of methanol-utilizing bacteria were screened for extracellular production of pyrroloquinoline quinone (PQQ) by using methanol as the carbon and energy sources. Of the bacteria selected, Hyphomicrobium sp. strain TK 0441 was examined for PQQ production by using a jar fermentor. The amount of PQQ in the broth and the level of methanol dehydrogenase activity in the cells were increa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016